
AD—AOb 8 167 UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES DEPT OF——ETC FIG 9/2
A KEYNOTE ADDRESS CONCURRENT PROGRAMMING. (U)
JIM 78 P 8 HANSEN NOOO1k 77 C—O71~UNCLASSIFIED Ni.

~~~~ n8,

END
GAIt

6 - -79



1.0 ~~~
_ _ _ _  : 2 

~I22

~~~

II~~
.8

I
~~ ~

4

M~CRO~OPY RESOWTION T~ST CH~4T
NAT I ONA L BLJ~ EAU O~ STANO AROS -t963- ,~

— ~~~~ -

C.ntractTj 11 1.~7J~c~Ø14J i

~EVLL~”A KEYNOTE ADDRESS ON CONCUR R ENT pROGRA mmI NG ‘~

II
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

PER BRtNCH4~ANSEN
1 D D C

Computer Science Department rm~.c&~flh1BI~F1
University of  Southern California ~UI~ ~~~~~~~ 

2 191~
Los Ange les , California 90007

• 
~ June 1978 

C

Abst ract — This paper summarizes the first twenty years of

concurrent programminq and identif~ as the majo r development

f ~~~ phases as an initial .hardware challenge fo l lowed by a sof tw are

crisis , a conceptual innovation , and language development  wh ich

in tur n led to formal understanding and hardware refLnemant .

~~ The paper draws a parallel between this development and the

c..~ 
present challenge of distributed computing.

Ir1de~ Terms — Concurrent prcgra~ m~ng, hardware chall enge ,

software crisis, conceptual innovation , language development ,

forma l understanding, hardware ref Ln ement , computer networks .

Keynote address for the IEEE Ccrncuter Software & Apolications

Conference ,  Chicago , Illinois, November 197 8.

This work has been supported by the Office of Nava l Research

under contract NR048—647. —

~ 
r~. ~~~~~~ ~ ~~1k ~~~~~ ~~~t btt~ -~~ •

~ un1~~j t~~

r i  ~~~~~ .p~ • ,-~. •~~

• 
‘ ;, ‘ •

// ~~2
’ 7 /



I. INTRODUCTION

This keynote address summarizes the highlights of the first
twenty years of concurrent programming (1960—80) and takes a look
at the next twenty years (1980—2000).

• 
• 

A concurrent program is one that enables a computer to do many
• things simultaneously. Concurrent programming is used to

increase computer efficiency and to cope with environments in
which many things need attention at the same time. Although
there are oocd economic and conceptual reasons for being interested
in concurrent programs there are major difficulties in making these
programs reliable.
The slightest programming mistake can make a concurrent program

behave in an irrepraducibla, erratic manner that makes program
testing impcssibla. The following describes how this problem was
gradually scived by software engineers and computer scientists.
This development is seen as an initial hardware challenge
followed by a software crisis, a conceptual innovation , and
language developmen t which in turn led to formal understandin g
and hardware refinement, The paper draws a parallel between this
evolution of ideas and the present challenge of distributed
comput ing.

It. THE DCVELOP~CNT CYCLE

When you look at concurrent programming on a time—scale of
decades you will see that it went through several stages of

development each lasting about 5 years:
~.-Hardware challenge (1955 — 60) 

~~~~

-‘‘

~~~~ ~tSoftware crisis (19a0 — 65) ,
~~~~ ~~~~~~ ~~~~~~~~~

‘

~~
• •

Conceptual innovation (1965 — 70)
~~
j. C. k.~

Language development (1970 — 75) ‘
•

~~ •4~~
i~~
” “\

Formal understanding (i975 —) •

,~ ~~~
‘
\

Hardware rer inement (1980 —)

•

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2

At the beginning of this period new hardware developments make
• concurrent programming both possible and essential. As

• programmers exper iment with this new idea they are gradually led
to the development of extremely complicated systems without much

• of a conceptual basis to rely an. Nat too surprisingly these
systems soon become so unreliable that the phrase “software
crisis” is coined by their designers. By then the importance of
the problem is recognized by computer scientists who start a
search for abstract concepts that will simplify the understanding
of concurrent programs. Once the essence of the problem is
understood a notation is invented for the basic concepts and it
now becomes possible to define them so precisely that thsy can be
incorporated into new programmin g languages. This language notatIon
in turn enables theoreticians to develop a mare formal understan ding

of the problem . At the same time, the new language concepts
inspire innovative computer designers.

At this point (if not sooner) new hardware possibilities
start another development cycle. One must indeed agree with Alan
Perlis that “hardware drives the field1” but one must also add that
“abstractions make it manageable,”

We mill look at each of the stages that concurrent programm ing
went through and see what the next challenge is likely to be.

III. THE HARDWARE CHALLENGE

A round 1955 computer architecture changed drasticall y with the
invention of larce .maonetic core~ stores and _asynchronously
oceratirg peripheral devices. It now became possible to wr ite
large programs cf 10,000 — 1 ,000 ,000 machine instructions . At

the same time interrupts made it possible to write concurrent
programs tha t could switch a fast processor among its much slower
peripheral devices and make them operate simui.tanecus .y.

The intellectual challenge of this technological :evolut~.on
was formidable. For the first time programs became too large to
be understood completely by a s~ngla prcqrammer. In response to



• 3

this challenge computer programmers invented the first abstract
programming languages, Fortran and Algal6Q , and made their
compilers some of the best understood and most reliable system

• programs we know. All this happened in less than 10 years. A
mast impressive achievement [i].

The capabilitIes far simultaneous execution of several tasks
on one computer did, however , create a serious problem that took
much longer to solve : Programming errors could now cause a
concurrent program to behave in an erratic, time—dependent
marmur . These errors were extremely difficult to find since their
effect varied from one execution to the next even when the input
data remained the same. It has taken twenty years to cope with
this problem of concurrency.
I? you look at computers from a programmer ’s point a? view

the main problem is to master the complexity of the hardware
innovations that were introduced two decades agc. By comparison
mini— and microcomputers are not revolutionary at all. Their
economic impact and the numerous possibilIties for new
applications are far reaching. But they have not , so far, posed
new programming problems of the same difficulty (thank heaven).

IV. THE SOFTWARE CRISIS

• The slowness of peripheral devices made asynchronous operation
essential for efficient computer operation. But the pitfalls of
concurrency made it equally important to present the user with a
simple, sequential interface to the machine . The new system

• programs that were supposed to make a concurrent computer system
both simple, reliable, and efficient wera called operatin~
systems.
Some of the early batch processing systems, such as Atlas (1961 )

and Exec II (1962), were both efficient and sImple. But they were
not entirely reliable. ifl locking back Bill Lynch observed tha t
“several problems remained unsolved with the Exec II operating
system and had to be avoided by one ad hoc means or another . The

_ _  -~~~~~~~~~~~~~~~~ • • -__ - -- ~~~~~~~-~~~~~~~~~ •



• 4

problem of deadlocks was not at all understood in 1962 when the
system was designed. A s s  result several annoying deadlocks were
programmed into the system” [2].

• The early time—sharing systems , such as CTSS (1962) and SDC
Q—32 (1964) were also of modest size.

Now , when faced with a new idea programmers have an i~resistable
urge to push it to its natural limits and then beyond . The next
generation of operating systems were complex beyond human
comprehension. The ~ultics system (1965) required 200 man—years
of development effort, and 05360 (1966) a staggering 5000 man—
years. Because of its size 05360 became quite unreliable. In 1969
HopkIns saId this : “We face a fantastic problem in big systems.
For instance, in 05360 we have about 1000 errors in each release
and this number seems to be reasonably constant” [3].

At this point it had become common far large operatin g systems
to fai]~ daily and i.t was doubtful whether they were achievin g
their original aim of ensuring efficient, reliable co~iputar
operation. There was a clear feeling at this point that it was

just not possible to design these large programs without some
conceptual basis that would make them more understandable.
The importance (and the faIlure) of operating systems had by

now become clear to computer scientists who , like all other
computer users,. were forced to depend on these systems in their
own computIng centers. And so the search far abstractions began.

V. THE CONCEPTUAL INNOVATION

• In looking back at this development it is clear tha t it was a
search for concepts that would make it pcssibla to divide a
concurrent prcgram into smaller asynchronous modules with
time—indeaendent behavior.
The idea of dividing a concurrent program into secuential

a c ~~ses that are e~cecuted asynchronously was by far th~ rr.cst

I



• 5

important innovation. This idea and its implementation was
pioneered at FlIT in the CTSS project [4].

• A process is a program module that consists of a data
structure and a sequence of statements that operates on it.
If each process only operates on its own data then i.t will
behave in a completely predictable manner each time it is
executed with the same data. Hardware protection mechanisms can
prevent processes from referring to each other ’s data structures
by mistake .

It now became. possible to perform unrelated tasks simultaneous—

• ly without time—dependent interference. However , if processes
share computer resources or cooperate on common tasks then they
must also be able to share data in a controlled manner. During
the late sixties the main focus was the invention of safe methods
for synchronizing processes which share data.
Dijkstra’s THE system (1968) is the milestone of this era

[5 ~ 7]. It introduced most of the concepts on whIch our present
understanding of concurrent programming rests. Dijkstra noticed
that all communication among processes boils down to porforming
operations an common data. But if several processes operate
simultaneously on the same variables at unpredictable speeds the
result will be unpredictable since none of the processes has any
way of knowing wha t the: others are doing to the varIables.
Dijkstra therefore concluded tha t it is essential to perform
the operations on common variables strictly one at a time. If
one process is operating on common variables then the machine
must delay further operations on the same variables until the
present operation is finished. Dijkstra introduced the name
critIcal racion for operations on common variables which take
place are at a time.
Critical regions only prevent competing procssses from using

common variables simultaneously. But they do not help in
transmitting data correctly from one proco~s to another. I;:

laokir.g at the problem of process communication , Oijkstra began

I



• 6

by st udying the simplest possible case in which timing signals
are sent from one• process to another. For this purpose he

• invented a data type , called a semao hcre .
• A signa l operation permits a pro cess to transmit a timing

signal through a semaphore variable to another process which
receives the signal by performing a wait operation. In a
concurrent system, the programmer cannot predict the relative
speeds of asynchronous processes. It is therefore impossible to
know 1’ihether one process will try to send a signal before another

• process is ready to receive it (or vice versa). Dtjkstra removed
• 

• this problem by defIning the semaphore operations in such a way
that it doesn’t matter in which order they are Initiated.. If a
process tries to receive a timing signal before it IS available,
the wait operation will simply delay the process until another
procese sends the noxt signal. Conversely, if signals temporarily
are being sent faster than they can be received , they will simply
be stored in the semaphore variable until they are needed.
The commutativit’, of semaphore operations made process

synchronization time~independent. Dljkstra then went on to show
how critical regions and message buffers can be implemented by
means of semaphores.
Dijkstra’s multiprogramming system also illustrated the

conceptual clarity of hierarchical structure. His system
ccnsistad of several program layers which gradually transform the
physica l machine into a more pleasant abstract machine that
simulates seve ral processes w hich share a large, homogenous store
and severa l v irtua l devices. These program layers can be designed
and studied one at a time.

His co—w orker Habermann showed that a hierarchIcal ordering of
resource requests and message cammuni:at~cn also can prevent
dea dlocks [8] .
around 1g70 researchers began to invcnt language notatIons for

these powerful new concepts.



7

VI. LANGUAGE DESJELOPFIENT

The invention of precise terminology and notation plays a
major role not only in the sciences but in all creative
andeavours.

When a programming concept is understood informally it would
seem to be a trivial matter to invent a language notatIon for it.
But in practice this is hard to do. The main problem is to
replace an intuitive , va gue idea with a precise , unambiguous
def inition a? its meaning and restrIctions. The mathematician
P01y3 was well aware of this difficulty [~J“An important step in solving a problem is to choose the
notation. It should be done carefully. The tica we spend now on
choosing the notation may well be repaId by the time we save later
by avoiding hesitation and confusion. Moreover , choosing the
notation carefully, we have to think sharply of the elements of
the problem which must be denoted. Thus, choosing a suitable
notation may contribute essentially to uncerstanding the problem.”

A programming language concept must reprasent a cenerol idea
tha t is used very often. Otherwise , it will ,just increase the
complexity of’ the language at no apparent gain. The meaning and
rules of a programming language concept must be arecisely
def ined. Otherwise , the concept is meaningless to a programmer.
The concept must be represented by a concIse notation that makes
it easy to recognize the elements of the concept and their
relationships. Finally, it should be possible by simple
techniques to obta in a secure, eff icient imolementation of the
concept. The compiler should be able to check that the rules
governing the use of the concept are satisfied, and the
programmer should be able to predict the speed and sire c? any
program tha t uses the concept by means of performance measurements
of ~ts Implementation.

- .  - ••-•~~~~~ —-



• 
~~

• •_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

8

As long as nobody studies your programs their readability may

not seem to be much of’ a problem. But as soon as you write a

description for a wider audience the usefulness of notation that
suppresses ir relevant detail immediately becomes obvious. So ,
although Dijkstra ’s THE system was implemented in assem bly
language, he found it helpful to invent a language notation for
concurrent processes in his descriptions [s].
The following example of’ Dijkstra’s concurrent statAment

shows two sequential statements that are executed simultaneously:

var this, next: line
cobegin consume (this)~ input(next) coend

WITilS one statement is consuming a line of text , called this,
another statement is Inputting the next line. The concurrent
statement terminates when all the component statements are

terminated.
I~ 1971 Hcara painted out that the concurrent statement only

has a predictable effect if’ the statements within it operate on
different variables E1o~. In this example , the consumer and the
input statements refer to different variables (thIs and next).
If the pra~ rammer by mistake lets both statements refer to the
same . variable the effect of the ccncu~’rent statement will be
time—dependent.
To prevent time—dependent programming errors a compiler should

be able to recognize the private variables of a process and make
them inaccessible to other processes. Unfortunately, this is
difficult to do in more complicated examples involving
procedures and global variables. The solution to this problem
will be described later.

Although it is essential to make some variables accessible to
one process only it is also necessary to enable processes to
share other variables to make cooperatIon and ccrnmunic~tion

possible.

_ _ _ _ _ _ _ _ __ _  _ _ _  • • •~



_ _ _ _ _ _ _ _ _ _ _  ____ _____ -_ _ _ _ _ _ _ _ _

9

In 1g71—72 notations were proposed for associating a shared
variable with the critical recions that operate on it [ia , ii].

• A shared integer used as a clock is a good example :

• var clock: shared integer
• — ~*~~ % J L  ~~

• Processes can either increment or read this clock by statements
of the form:

ticks region clock do clocks= (clock + 1) mod max
-~~~ —

read(x): region clock do xs= clock
_ _ _

• The compiler checks that a shared variable is accessed only
within critical regions. The computer guarantees that these
regions are executed one at a time without overlapping .

Hoare also invented the beautLful concept of a conditiona~
cr itical region which is delayed until a shared variable
satisfies some condition (defined by a boolean expression).
A ~ccd example is a message buffer consisting of a single line
slat and a boolean indicating whether or not it is full:

var buffer : shared record
~ J— -~~~~~~~~

slot: line
full: boolea n

end

The send operation is a conditional critical region that is
executed when the buffer is empty:

send(m): reclon buffer when not full do
I,1~~~r~~ JL ..7l~

begin slot:= m~ full : true end
• _

The receive operation i.e similar:

receive (m): reqion buffer when full do
—

begin m : slot; full:= false end

At that time it did not seem possible to implement conditiona l

critical regions efficiently on a single processor. The p:c~ ler~
was to limit the repeated evaluation of boolean expressions until

• they become true. As a compromise between elegance and efficiency



• 10

process queues (also called “events” or “conditions” ) associated
with shared variables were proposed [ii].

At that time Dijkstra suggestea that the meaning of process
interactions could be further clarified by combining all
operations on a shared data structure into a single program
module (instead of scattering them throughout the prcgramtext) [7].

Irs 1973 a language notation for this monitor concept was
proposed [12]. The data representation of a message buffer
together with the sand and receive operations on it now lacked
like ‘This :

• monitor buffer
var slot: line; full: boolean

procedure send(rn : line)
when not full do
begin slot:= m; full:= true end

procedure recsive (var tin line)
—
when full do
begin ms slot; full:= false end

—

begIn full:= false end

The monitor includes an initial statement that makes the buffer
empty to begin with. In a later paper Hoare also described the
monitor concept and illustrated it with examples [13J.

A central theme in this development was an attempt t~ replace
earlier hardware protection mechanisms by compilatIon checks.
The monitor concept enables a complier to check tha t send and

• receive are the only operations performe d on a message buffer .
Once the buffer monitor has been tested systematically the
compiler prevents other program modules from using it
incorrectly. This tends to localize errors in new , untested
modules and prevent them from causing obscure effects in old ,
tasted modules.



r •

• 11

The elimination of execution ch~~ks was not done just to make
compiled programs more eff.~.cient. In program engineering,
compilation and execution chocks play the same roles ss
preventive maintenance and flight recorders do in aviation. The
latter only tell you why a system crashed; the former prevents

• it. This distinction iS essential in real—time systems that
control vital functions in society. Such systems must be highly
reliable before they are put into operation.

Tha monitor concept solved the problem of controlled access
to s~~red variables. The earlier .problem of controllIng the
the access to private variables ~as solved by declaring each
process and its local variables a separate program module :

process producer
var next : line

~~~le input(naxt); buf?er..send(next) end

• procc~s consumer
var this: line
cycle buffer.rece~.vo(thjs); CansumG(th i3) end

This language notation makes it obvious tc the program reader
and the compiler that the variable next only can be used within
the producer process.

Tho first programming language based on processes and monitor
was Concurrent Pascal. It was defined and implemented in 1 974

£14J. By the end of 1975 Concurrent Pascal had been used to
write three minicomputer operating systems of 600 — 1400 lines
each. The development and documentation effort of each system
was only a few weeks [is — 16]. A later language ~adula (1977)
is also based on the process and monitor concepts LI?].
These language concepts had a dramatic impact on th8

structur8 of concurrent programs. It now became natural to buil d
a concurrent program out of modules of one page each. Since each
module defInes all the meaningful cpe:aticn~ an a single data
structure (pr ivate or shared), the modules can be studied and

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~



12

tasted one at a time. A~ a result these concurrent programs
became more reliable than the hardware they ran an. And their
simplicity made it possible to publish the entire text of a
concurrent program of 1300 lines [is].

It is interesting that sequential programmers Independently
• 1 were led to the discovery of program modules which combine data
• rspresentat~ons arid procedures into units [isj . But although

the two developments lad ta the same conclusions the motivations
were different: concurrent programmers were gradually led to
mc dular~ty simply by their desire to master synchronization and

• prevent racing conditions, These problems do not occur in
sequential p:ograms. Sequential programmers were mctivatad by

more abstract concerns for clarity and the desire to make
program verif~caticn simpler.

VII .  ~ OR~ AL UN DE RST AN DING

Once you have a notation for a concept it becomes possible to
ref ine it further and get a more Formal understanding of it~
properties. The im pact of notation on discovery has been
expressed very well by Susanne Langer Li~1“~ here is something uncanny about the cower of a happily chosen
ideographic language ; for it often allows one to express relations
which have no names in natural language and therefore have never

been noticed by anyone. Symbolism , then , becomes an organ of
discovery rather than mere notatian.~
It is no coincidence therefore that the development of language

notation for concurrent programming immediately inspired
theoretical work un program verification. Hoare ’s first paper
on ccncu::snt programming (1972) conta ins axiomatic definitions
of the meaning of concurrent statements arid critical regions. A
later paoer by Hears (1974) defines the effect of cucue manipulation
within monitors. The development o? verification ru lo c fo r

I



• 13

concurrent programs wit h conditional critical regions was
• carried further by Owicki and Cries [20].

It remains to be seen what effect these theories will have
on language refinement and program reliability. (fast researchers

• would agree tha t our theore tica l und erstanding of concurrency is
still in its infancy. A successful approach in this area will
almost certainl y require tha t computer scientists go beyond
well—un derstood exercises and concern themselves with model
systems a? a non—trivial size.

• V I I I .  HAR DW AR E RE F INE IIE NT

The trend of decreasing hardware costs and increasing software
ccsts is likely to continue due to bettei production m ethods and
continued inflation . At the moment the use of abstract programming

• languages is the only effective way of reducing software costs.
Unfortunately, present computer architectures do not support
abstract languages efficiently compared to machine language . A
real—time programmer is therefore faced with a meaninglees choice
b~tw~~ri cost, reliability, and efficiency. The solution is quite

we must build computer architectures that support our
programming concepts directly.

A few years after the invention of t~e block and procedure
concepts of Algol6O the first stack computers appeared. It did ,

however , take mare than a decade for this idea to be generally
adopted by most computer manufacturers.

A similar development is now taking place in concurrent
programming . The miorcprocessor technology makes’ it possible to

build computer arohitectures that will si.pport the process arid
i~cnitor concepts d~rsctly. A recent proposal envisions a computer
with 10 m icroprocessors . Each processor has a local store dedicated
to a single process. The processors share a common store that

co;itoins th~ mcnitaro . This computer has no thterru~ t o and  doss

not multiplex its processors among several processes L21].



• 14

I would expect an increasing number of computer architectures
to be oriented towards the support of concurrent programming
languages for real—time applications.
ror applications that are of interest to a large number of

• people it will be economical to specialize the hardware even
• further. In those cases it seems very attractive to write a

concurrent program in an abstract language tha t hides machino
detail, test it on an existing machine , and then derive the most
straight—forward specialized architecture from the program itself .
L1~ i the development of our theoretical understanding the

• design of new computer architectures for  concurrent programming
has just s~artad and will probably continue for another decade.

IX . THE NEXT CHALLENGE : COmPUTER NETWORKS

It has taken twent y years to design reliable computer syste ms
in which concurrent procecees share storage. And now hardware
technology has provided another challenge : microcomputer nct~icrks
in which processors communicate by input/output cnly (withcut any
ccmmcn storage). This seems a natural approach to real-time
applications in which geographically distributed functions must
be coordinated.

Anyone who took the word ‘abstraction ’ to mean ‘machine
independent’ suddenly discovered that abstract prcgramming
languages merely hide the irrelevant differences between similar
computer architectures. The procedure concept is still fundamentally
tied to the existence of a common store for parameter passing. And
the people who developed monitors for concurrent programming also
took this technological assumption for granted.

Now it may seem tha t the solution to the distributed processing
problem is simple: message passing between processors connected
by cables is all that is needed . And message passing (one of the
oldest Ldeas in concurrent programming) wa surely understand very
well. Unfortunately, it is riot tha t easy.



15

Wha t use do understand is deterministic messa~ e passina in which
a receiving process waits until another process sends a message
on a given line. In such a system each process performs a
complotely predictable transformation of its input to its
output. The analysis of individual processes must be supplied
with a global analysis of termination (or absence of deadlocks).
This can be guaranteed by a hierarchical ordering of processes
into ‘masters’ and ‘servants’.

A ~~cerit paper by Hoare, however , makes it clear that one
must also include nondeterministic message oassinq — a far mc:e

• complex problem c22~~
. An obvious example ~s a process t hat

funct ions as a buffer between two other processes. The bu?~ e:
process cannot predict whether its environment will ask it t~
receive or send a message next . Consequent ly, it cannot c~mrn it
itself to waiting until it receives a message on the input line.
Fo r this would make it unable to respond tc a request for

• send ing a message on its output line. Conversely, it cannot
commit itself to wa it until Lt is asked to send a message either.
Far this would make it unable to receive further messages in the
meantime thereby slowIng down the producer process unnecessarily.

Wha t is needed therefore is the ability of a prccsss to delay
itself until it receives either a request for sending or receiving.
It must then be able to perform one of two actions depending on
what iS was asked to do.

The problem is further complicated by the finite storage
capacity cf a buffer process. When the buffer is full , the
process cannot accept further input ; and when it is empty, the
process cannot deliver further output. Hc’ars Ls therefore led to
introducing a non—deterministic statement a? the form:



_ _  I:

• 16

when
• not full(buffer), input (x ) : put(x , buffer )

• not empty (buffer) , output(x): get(x, buffer)
end

Theso communicatina se~uent~al processes seem somewha t
inconvenient for the programming of processes that schedule
other processes. To handle this problem the concept of
distributed orcceaoes has been proposed [23]. It combines the
proc~’ss and monitor concepts and enables one process to call a
procedure within another process when the latter process is wait ing
for some condit ion to be satisfied by ~.ts own varIables . Th~
parameter passing between processes can be done by a single input
operation before a process interaction f~ llow~ d by a single output

operation afterwards.
The practicality a? these recant proposals have not yet been

established. They have not even been Implemented and are not
understood formally. Their main value is to make it clear that
distr ibuted computing will require new concepts.
I? the history of concurrent programming is about to repeat

~tse1f we should expect the new hardware challenge to lead to a
software crisis as the technology is being used in real-time
applications by means of ad h~c programming techniques. The
search for concepts, languages, and theory will then start again.
This will take longer tha n we may thtnk. I would expect
distrIbuted computing to be reasonably well understood by the
year 2000.

ACK N CWL EDG E nENT

This work was sup~crted by the Office of Naval Research under
contract no. NRC4g..415.

A - -



17

REF~RCNCES

• [i] AC~I, History of programming languages conference , ~~~Sigplan Notices, Vol. 13 , no. 89 Aug . 1978.
[2] Ui. C. Lynch, “A n operating system design for the computer

utility environment ,” ~~ erat inc Systems Technicues, ed.
C. A . R. Hoara , New Yo rk , NY : ~4c3danu.c Press , 15T2.
Nato report on Softwa re Engineering, Rome , Italy,
Oct. 1969.

[4] J. H. Sa ltze;, Traff Ic control in a multiolexed comouter
~~ys tem . ~rAC~ TR~ 3Q. ~1assac~iusetts Institute of Technology,
Cam~ridge , l~A , July 1966.

• [5] E. Ui. Dijkstra , “Cooperat ing sequential prccesses , ”
Pragra r~mina Lannua cee, ed. F. Genyus , pp. 4 3— 112 , ~ew York ,NY: cades~iic ~r~ss, 1968.

[51 , “The structure of THE multiprogramming gystem~ ”
~~~nun. ~~~ Comout. Mach ,, vol. 11. pp. 34 1—346 , ~ay 1968,

, “Hierarchical ordering of sequential processes ,’~
~E~a !nfor~~tica, vol. 1, pp. 113—138 , 1971.

[8] A . N. Habermsnn, On ithe harmcn~cus ccooq:~t.icn of abstr~ct
machires. Technolcgi.cal Univer~~.;y, ~indnaven~~TneNet iarlands , 1967.

[g] C. Polya, How to solve It. Garden Ci ty , NY : Ocub isday, 1987.
[i oj C, A. R. Hoara , “Towa rds a theory of parallel prcg:3:~ming, ”

Ooerat .no Syctems i ocnnicucs, ed, C. A. R. Hoare , New Ycr~<,NY , o~ca~smic press, 1 72.
[ii] P. Br~nch Hansen , “Structured multiprogramming,” Ccrnmun.

Ass. Com~ut. r~ach., vol. 15, pp. 574—578, July 1972.
[121 , O s rat~ na system crlncioles. Englewood Cliffs , NJ:

ntice—~ai~~ July ~~~~~[lij C. A . R. Hoare , “monitors: an operating syste m structuring
concept ,” Commun. A ss. Comout. mach ., vol. 17, pp. 549—557 ,
Oct. 1974.

[14] P. Erinch Hansen , “The programming language Concurrent Pasca l,”IEEE Trans. Software Era., vol , SE—~ , pp. 199—207 , June 197~ .
, “The Solo operatIng system ,” So?t~ara — Practice and

~~~eriance, vol. 5, pp. 141—205 , Apr .—June 1976.
[~5] , The architecture of concurrent orocrams. Englawood

~~~~~~ r•4J~ Prentio~—Hall, July 1~ 77.

—

—
—— — ~~ i :i-i - rr -- - 1~~-~~L. :r~~~~~-* dt:S . V - :11

TT~~~~~~

18

[17] N, Wirth, “Diadula: a programming language for modular
multiprogramming,” Software — Practice and ExDerienca,
vol. 7, pp. 3—35 , march — k pril 1977.

[18] C. A . R. Hoare, “Proof of correctness of data representations,”
Acta Informatlca, vol. 1, pp . 271—281 , 1972.

[i gl S. K. Langor, An introduction to symbolIc b o b . New York , NY:
Dover Publications, 1~ ãi,

[20] 5. Owicki and D, Cries, “Verifying properties of parallel
programsi an axiomatic approach,” Cor~mun. Ass. Comout, r~zch.,vol. 19, pp. 279—288, f~ay 1976.

[21] P. Brinch Hansen, “Diultiprocessor architacturos f or
~~oncurrent programs ,” Computer Science Depa;tm~nt ,
University of Southern Calfforn~a, Los Angeles, CA , A pr,1978.

E22J C. A . R. Hoare, “Communicating sequential processes,” To
appear in Cammun. 2. C~ m~ut. ~~ch.

E23] P. Brinch Hansen , “Distributed p:ocses~s — a concurr ent
programming concept ,” TO appear in Cammun, A ss. Co~~ ut.
f~a c h.

_____ ___________________________ - -~~~~~~~ -— - ~~~~~ _____

